Toolkit for Intelligent Combat Planning & Simulation (TINCOPS)

TINCOPS is a knowledge-based decision support system that manages and deploys knowledge for the U.S. military’s complex combat decision support applications and for analyzing and evaluating logistics plans.

The result of mission planning is a strategy for accomplishing the intended objectives that reflects decisions on the best methods and course of actions to follow.  The mission planning process is knowledge intensive and involves a number of factors that must be considered including uncertainties in the intelligence collected, enemy response, changes in logistics needs or routes, etc.  In addition, once the mission is active, changes in the battlespace can occur rapidly and commanders must receive accurate and current combat situational information in order to craft the most effective response and change to the original strategy.

Continue reading

Reliability Centered Maintenance Costing (RCMC™)

The RCMC™ methods and tools support the critical knowledge discovery, cost modeling, and maintenance cost projection needed by Reliability Centered Maintenance (RCM) decision makers.  The methodology considers proposed maintenance actions on aggregate level metrics like engine availability, performance, and life cycle costs.

Current aircraft engine maintenance activities performed by the Air Force must account for both scheduled and unscheduled maintenance needs.  These maintenance activities, whether scheduled or unscheduled, are characterized as following an on-condition maintenance (OCM) strategy:  the maintenance work is performed to repair only what is broken or has already exceeded its time-on-wing (TOW) limits.

Continue reading

Hybrid Discovery Wizard (HDWizard™)

HDWizard™ is a hybrid decision support toolkit that provides agent-based decision support for the automated generation of information from disparate and distributed data to support user-defined decision support goals.

Government and industry lack robust, hybridized approaches and methods for applying common sense reasoning techniques in decision support and knowledge management systems.  KBSI’s Hybrid Discovery Wizard (HDWizard™) project focused on developing a generic HDWizard™ toolkit that includes data mining, fusion, and inference/reasoning methods.

Continue reading

Adaptive Trajectory Reshaping & Control System (ATRC)

The ATRC initiative developed real time solution techniques and algorithms for a reconfigurable control and guidance system for autonomous reusable launch vehicles (RLVs).  ATRC includes on-line parameter learning and real time reshaping of vehicle trajectories under uncertain damage/failure scenarios.

The U.S. Air Force, to keep pace with the demands of homeland security and global operations, is exploring methods for improved space utilization.  A significant impediment to increased space utilization is the huge cost of launching operations, and the Air Force is investigating more affordable launch operations via a number of Reusable Launch Vehicle (RLV) programs.  Part of the focus is on maintaining the economic viability of RLVs by enhancing operations safety and reliability;  i.e., to improve RLV capabilities for responding to various uncertainties and emerging situations.

Continue reading

Agile, Wireless-Enabled Workflows for Ship Manufacturing & Repair (AWSM™)

The AWSM™ technology represents a new paradigm for ship manufacturing that redesigns manufacturing processes and uses computing and wireless technologies to deliver information–activity statuses, resource availability, design and scheduling changes–to every user, work crew, or process involved in the project.

A central challenge in any large-scale manufacturing environment is to effectively adjust to production and procurement glitches that ripple across and continually threaten manufacturing schedules.  The ship manufacturing industry is no exception.  With manufacturing projects that stretch over years and involve numerous divisions, materials, facilities, and manpower, how can U.S. shipyards achieve the kind of proactive flexibility needed to develop and maintain the most efficient and cost-effective production schedules?

Continue reading

Automated Rule Learning from Data Traces (TraceLogic)

The TraceLogic initiative is developing methods, processes, and algorithms to decipher the hidden rules or logic of complex flight operations aboard Navy aircraft carriers.  The TraceLogic technology will help the Navy to better understand and address the technical and pragmatic problems associated with improving flight operation performance.

Operations on aircraft carriers have been described as “controlled chaos” that involve a complex, choreographed mix of flight-mission preparations, launch, recovery, and mission close-out operations.  Critical activities take place on the hangar deck, the flight deck, and in the control center and these activities are performed by personnel with distinct roles, using mobile and fixed equipment, ordnance, and fuel.  Missions are often in flux, and a single equipment failure can throw the entire plan of action into a tailspin.

Continue reading

Raster to Parametric CAD (R2P CAD)

KBSI investigated and demonstrated the conversion of CALS Type I raster mechanical drawings to parametric vector format and to parametric 3D solid models, improving electronic commerce, competitive reprocurement, and maintenance for related systems.

This initiative investigated and demonstrated the conversion of CALS Type I raster mechanical drawings to parametric vector format and to parametric 3D solid models by leveraging KBSI’s “Vector to 3D” (3VD) technology.  Raster drawings consume storage space and network bandwidth, have a finite resolution, often suffer from poor image quality, and are expensive to maintain and edit.  These limitations impact electronic commerce, competitive reprocurement, and maintenance.

Continue reading